Nerve growth factor-induced synaptogenesis and hypertrophy of cortical cholinergic terminals.

نویسندگان

  • L Garofalo
  • A Ribeiro-da-Silva
  • A C Cuello
چکیده

In this study light and EM quantitative analysis were used to examine whether exogenous nerve growth factor (NGF) could affect terminal fields and synaptic connections in the adult rat brain in vivo. Adult rats received, immediately after unilateral decortication, 2.5S NGF (12 micrograms/day) or vehicle intracerebroventricularly for 7 days. Thirty days after the lesion cholinergic fiber length was quantified, using image analysis, in the remaining cortical area adjacent to the lesion site in each animal. Rats that had received vehicle showed a significantly reduced cortical choline acetyl-transferase-immunoreactive fiber network in the remaining cortex when compared with control animals. By contrast, the network in lesioned rats that had received 2.5S NGF was not different from control animals. Furthermore, the number of cortical choline acetyltransferase-immunoreactive varicosities, which decreased in vehicle-treated lesioned rats, significantly increased above control in lesioned rats that had received 2.5S NGF. At the ultrastructural level, 30 days after the lesion, animals that had received vehicle showed shrunken cholinergic boutons in cortical layer V and fewer synapses compared with control animals. Exogenous NGF, administered to lesioned rats, increased to supernormal levels both size of cholinergic boutons and number of synaptic contacts. These parameters were unaltered in unlesioned rats treated with NGF. This study demonstrates that exogenous NGF can cause significant compensatory changes in terminal fields and synaptic connections in the adult fully differentiated central nervous system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of Bone Marrow Stromal Cells into Cholinergic-Like Cells by Nerve Growth Factor

Background: Bone marrow stromal cells (BMSC) are used as a source for cell therapy in different model for neurological disorder such as stroke and spinal cord injury. However, the transdifferentiation of BMSC into cholinergic phenotype requires more investigation. Methods: BMSC were isolated from adult rats, pre-induced with β-mercaptoethanol (BME) and followed by nerve growth factor (NGF) indu...

متن کامل

Expression of the nerve growth factor receptors TrkA and p75NTR in the visual cortex of the rat: development and regulation by the cholinergic input.

Several lines of evidence have shown that nerve growth factor (NGF), the progenitor of the neurotrophin family of growth factors, plays a fundamental role in the developmental plasticity of the rat visual cortex. However, the expression of NGF receptors (NGFRs) TrkA and p75(NTR) and the possible sites of NGF action in the visual cortex remain to be elucidated so far. Using a highly sensitive EC...

متن کامل

Nerve growth factor and Alzheimer's disease.

Clinical trials with cholinergic agents suggest that cholinergic hypertrophy may be beneficial in the treatment of Alzheimer's disease (AD). Recent findings substantiate the view that nerve growth factor (NGF) selectively acts on cholinergic neurons. In adult rats and primates, intraventricular administration of nerve growth factor produces trophic actions on cholinergic neurons and prevents ag...

متن کامل

Presence of prejunctional D2-dopaminoceptors and α2-adrenoceptors on the cholinergic nerve of the common bile duct of guinea pig

On most adrenergic and cholinergic nerve terminals, prejunctional α-adrenoceptors belonging to the α2-subtype have been identified. Activation of these receptors will decrease the release of norepinephrine. It has been reported that several isolated tissue preparations contain prejunctional dopamine receptors, the stimulation of which inhibits neurotransmission. It has remained uncertain whethe...

متن کامل

Nerve growth factor scales endocannabinoid signaling by regulating monoacylglycerol lipase turnover in developing cholinergic neurons.

Endocannabinoid, particularly 2-arachidonoyl glycerol (2-AG), signaling has recently emerged as a molecular determinant of neuronal migration and synapse formation during cortical development. However, the cell type specificity and molecular regulation of spatially and temporally confined morphogenic 2-AG signals remain unexplored. Here, we demonstrate that genetic and pharmacological manipulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 89 7  شماره 

صفحات  -

تاریخ انتشار 1992